Towards proof automation: Herbrand’s Theorem and Skolemization

Benjamin Wack

Université Grenoble Alpes

March 25th, 2016
Every man is mortal.

Socrates is a man.

Hence Socrates is mortal.

▶ Look for a counter-model using a 1-expansion then a 2-exp.

▶ What can you conclude?
Every man is mortal. \[\forall x (\text{man}(x) \Rightarrow \text{mortal}(x)) \]

Socrates is a man. \[\land \text{man}(\text{Socrates}) \]

Hence Socrates is mortal. \[\Rightarrow \text{mortal}(\text{Socrates}) \]

- Look for a counter-model using a 1-expansion then a 2-exp.

- What can you conclude?

Nothing! Except that this formula is satisfiable.
Every man is mortal. \[\forall x (\text{man}(x) \Rightarrow \text{mortal}(x)) \]

Socrates is a man. \[\wedge \text{man}(\text{Socrates}) \]

Hence Socrates is mortal. \[\Rightarrow \text{mortal}(\text{Socrates}) \]

- Look for a counter-model using a 1-expansion then a 2-exp.
 - 1-expansion:
 \[(\text{man}(0) \Rightarrow \text{mortal}(0)).\text{man}(\text{Socrates}) \Rightarrow \text{mortal}(\text{Socrates}) \]
 We can only interpret Socrates as 0: no counter-model.

- What can you conclude?
 Nothing! Except that this formula is satisfiable.
Homework

<table>
<thead>
<tr>
<th>Every man is mortal.</th>
<th>(\forall x (\text{man}(x) \Rightarrow \text{mortal}(x)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socrates is a man.</td>
<td>(\land \text{man}(\text{Socrates}))</td>
</tr>
<tr>
<td>Hence Socrates is mortal.</td>
<td>(\Rightarrow \text{mortal}(\text{Socrates}))</td>
</tr>
</tbody>
</table>

- Look for a counter-model using a 1-expansion then a 2-exp.
 - 1-expansion:
 \((\text{man}(0) \Rightarrow \text{mortal}(0)).\text{man}(\text{Socrates}) \Rightarrow \text{mortal}(\text{Socrates}) \)
 We can only interpret \textit{Socrates} as 0: no counter-model.
 - 2-expansion:
 \((\text{man}(0) \Rightarrow \text{mortal}(0)).(\text{man}(1) \Rightarrow \text{mortal}(1)).\text{man}(\text{Socrates}) \Rightarrow \text{mortal}(\text{Socrates}) \)
 We may interpret \textit{Socrates} as 0 or 1, but neither yields a counter-model.

- What can you conclude?
Homework

<table>
<thead>
<tr>
<th>Every man is mortal.</th>
<th>∀x(man(x) ⇒ mortal(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socrates is a man.</td>
<td>∧man(Socrates)</td>
</tr>
<tr>
<td>Hence Socrates is mortal.</td>
<td>⇒ mortal(Socrates)</td>
</tr>
</tbody>
</table>

- Look for a counter-model using a 1-expansion then a 2-exp.
 - 1-expansion:
 \[(\text{man}(0) \Rightarrow \text{mortal}(0)).\text{man}(\text{Socrates}) \Rightarrow \text{mortal} (\text{Socrates})\]
 We can only interpret Socrates as 0: no counter-model.
 - 2-expansion:
 \[(\text{man}(0) \Rightarrow \text{mortal}(0)).\text{man}(\text{Socrates}) \Rightarrow \text{mortal}(\text{Socrates})\]
 \[(\text{man}(1) \Rightarrow \text{mortal}(1)).\text{man}(\text{Socrates}) \Rightarrow \text{mortal}(\text{Socrates})\]
 We may interpret Socrates as 0 or 1, but neither yields a counter-model.

- What can you conclude?
 Nothing! Except that this formula is satisfiable.
Overview

Introduction

Herbrand Universe (domain) and Herbrand Base

Herbrand Interpretation

Herbrand’s Theorem

Skolemization

 Motivation, properties and examples

 Definitions and procedure

Conclusion
Plan

Introduction

Herbrand Universe (domain) and Herbrand Base

Herbrand Interpretation

Herbrand’s Theorem

Skolemization
 Motivation, properties and examples
 Definitions and procedure

Conclusion
Introduction

Reminder: In first-order logic, there is no algorithm for deciding whether a formula is valid or not.
Introduction

Reminder: In first-order logic, there is no algorithm for deciding whether a formula is valid or not.

Semi-decision algorithm:

1. If it terminates then it correctly decides whether the formula is valid or not.

 When the formula is valid, the decision generally comes with a proof.

2. If the formula is valid, then the program terminates. However, the execution can be long!
Introduction

Reminder: In first-order logic, there is no algorithm for deciding whether a formula is valid or not.

Semi-decision algorithm:

1. If it terminates then it **correctly decides** whether the formula is valid or not.
 When the formula is valid, the decision generally comes with a proof.

2. If the formula is valid, then the program terminates. However, the execution can be long!

Note that if the formula is not valid, termination is not guaranteed.
Plan

Introduction

Herbrand Universe (domain) and Herbrand Base

Herbrand Interpretation

Herbrand’s Theorem

Skolemization
 Motivation, properties and examples
 Definitions and procedure

Conclusion
Domain closure

Definition 5.1.1

Let C be a formula with free variables x_1, \ldots, x_n.

The domain closure of C, denoted by $\forall(C)$, is the formula $\forall x_1 \ldots \forall x_n C$.

Example 5.1.2

$\forall(P(x) \land R(x, y)) =$

Definition 5.1.1

Let C be a formula with free variables x_1, \ldots, x_n.

The **domain closure** of C, denoted by $\forall(C)$, is the formula

$\forall x_1 \ldots \forall x_n C$.

Example 5.1.2

$\forall (P(x) \land R(x, y)) =$

$\forall x \forall y (P(x) \land R(x, y)) \text{ or } \forall y \forall x (P(x) \land R(x, y))$
Domain closure

Definition 5.1.1
Let C be a formula with free variables x_1, \ldots, x_n.

The domain closure of C, denoted by $\forall(C)$, is the formula
$\forall x_1 \ldots \forall x_n C$.

Example 5.1.2
$\forall(P(x) \land R(x, y)) =$

$\forall x \forall y (P(x) \land R(x, y)) \text{ or } \forall y \forall x (P(x) \land R(x, y))$

Let Γ be a set of formulae: $\forall(\Gamma) = \{ \forall(A) \mid A \in \Gamma \}$.
For example: $\forall(\{ P(x), Q(x) \}) = \{ \forall x P(x), \forall x Q(x) \}$
Assumptions

We consider that

- the formulae do not contain neither $=$, nor \top or \bot (since their truth value is fixed)

- every signature contains at least one constant (add the constant a if need be.)
Herbrand universe (domain) and Herbrand base

Definition 5.1.4

1. The Herbrand universe D_Σ is the set of closed terms (i.e., without variable) over Σ.

 Remark: this set is never empty, since $a \in D_\Sigma$.
Herbrand’s Theorem

Herbrand Universe (domain) and Herbrand Base

Herbrand universe (domain) and Herbrand base

<table>
<thead>
<tr>
<th>Definition 5.1.4</th>
</tr>
</thead>
</table>
| 1. **The Herbrand universe** D_Σ is the set of closed terms (*i.e.*, without variable) over Σ.
Remark: this set is never empty, since $a \in D_\Sigma$.
2. **The Herbrand base** B_Σ is the set of closed atomic formulae over Σ. |
Herbrand universe (domain) and Herbrand base

Definition 5.1.4

1. **The Herbrand universe** D_Σ is the set of closed terms (i.e., without variable) over Σ.

 Remark: this set is never empty, since $a \in D_\Sigma$.

2. **The Herbrand base** B_Σ is the set of closed atomic formulae over Σ.

Example 5.1.5

1. Let $\Sigma = \{ a^f_0, b^f_0, P^r_1, Q^r_1 \}$: $D_\Sigma = \{ a, b \}$ and
Herbrand universe (domain) and Herbrand base

Definition 5.1.4

1. The Herbrand universe D_Σ is the set of closed terms (i.e., without variable) over Σ.

 Remark: this set is never empty, since $a \in D_\Sigma$.

2. The Herbrand base B_Σ is the set of closed atomic formulae over Σ.

Example 5.1.5

1. Let $\Sigma = \{ a^{f_0}, b^{f_0}, P^{r_1}, Q^{r_1} \}$: $D_\Sigma = \{ a, b \}$ and $B_\Sigma = \{ P(a), P(b), Q(a), Q(b) \}$.

2. Let $\Sigma = \{ a^{f_0}, f^{f_1}, P^{r_1} \}$: $D_\Sigma = \{ f^n(a) \mid n \in \mathbb{N} \}$ and
Herbrand universe (domain) and Herbrand base

Definition 5.1.4

1. The Herbrand universe D_Σ is the set of closed terms (i.e., without variable) over Σ.

 Remark: this set is never empty, since $a \in D_\Sigma$.

2. The Herbrand base B_Σ is the set of closed atomic formulae over Σ.

Example 5.1.5

1. Let $\Sigma = \{a^f_0, b^f_0, P^r_1, Q^r_1\}$: $D_\Sigma = \{a, b\}$ and
 $B_\Sigma = \{P(a), P(b), Q(a), Q(b)\}$.

2. Let $\Sigma = \{a^f_0, f^f_1, P^r_1\}$: $D_\Sigma = \{f^n(a) | n \in \mathbb{N}\}$ and
 $B_\Sigma = \{P(f^n(a)) | n \in \mathbb{N}\}$.
Plan

Introduction

Herbrand Universe (domain) and Herbrand Base

Herbrand Interpretation

Herbrand’s Theorem

Skolemization
 Motivation, properties and examples
 Definitions and procedure

Conclusion
Definition 5.1.6

Let $E \subseteq B_\Sigma$.

The Herbrand interpretation $H_{\Sigma,E}$ consists of the domain D_Σ and:

1. Constants symbols s are mapped to themselves.
2. If s is a function symbol and if $t_1, \ldots, t_n \in D_\Sigma$ then $s_{H_{\Sigma,E}}(t_1, \ldots, t_n) = s(t_1, \ldots, t_n)$.
3. If s is a propositional variable, $s_{H_{\Sigma,E}} = 1$ (true) iff $s \in E$.
4. If s is a relation symbol then $s_{H_{\Sigma,E}} = \{ (t_1, \ldots, t_n) \mid s(t_1, \ldots, t_n) \in E \}$.

Another way to put it:

- Terms are interpreted as themselves.
- E is the set of true atomic formulae.
Definition 5.1.6

Let $E \subseteq B_{\Sigma}$.

The Herbrand interpretation $H_{\Sigma,E}$ consists of the domain D_{Σ} and:

1. Constants symbols s are mapped to themselves.
Herbrand Interpretation

Definition 5.1.6

Let $E \subseteq B_{\Sigma}$. The **Herbrand interpretation** $H_{\Sigma,E}$ consists of the domain D_{Σ} and:

1. Constants symbols s are mapped to themselves.
2. If s is a function symbol and if $t_1, \ldots, t_n \in D_{\Sigma}$ then
 $$s_{H_{\Sigma,E}}(t_1, \ldots, t_n) = s(t_1, \ldots, t_n).$$
3. If s is a propositional variable, $s_{H_{\Sigma,E}} = 1$ (true) iff $s \in E$.
4. If s is a relation symbol then
 $$s_{H_{\Sigma,E}} = \{ (t_1, \ldots, t_n) \mid s(t_1, \ldots, t_n) \in E \}.$$
Herbrand Interpretation

Definition 5.1.6

Let $E \subseteq B_{\Sigma}$. The Herbrand interpretation $H_{\Sigma,E}$ consists of the domain D_{Σ} and:

1. Constants symbols s are mapped to themselves.

2. If s is a function symbol and if $t_1, \ldots, t_n \in D_{\Sigma}$ then $s_{H_{\Sigma,E}}(t_1, \ldots, t_n) = s(t_1, \ldots, t_n)$.

3. If s is a propositional variable, $s_{H_{\Sigma,E}} = 1$ (true) iff $s \in E$.

Another way to put it:

- Terms are interpreted as themselves.
- E is the set of true atomic formulae.
Herbrand Interpretation

Definition 5.1.6

Let \(E \subseteq B_\Sigma \).

The Herbrand interpretation \(H_{\Sigma,E} \) consists of the domain \(D_\Sigma \) and:

1. Constants symbols \(s \) are mapped to themselves.
2. If \(s \) is a function symbol and if \(t_1, \ldots, t_n \in D_\Sigma \) then
 \[
 s_{H_{\Sigma,E}}(t_1, \ldots, t_n) = s(t_1, \ldots, t_n).
 \]
3. If \(s \) is a propositional variable, \(s_{H_{\Sigma,E}} = 1 \) (true) iff \(s \in E \).
4. If \(s \) is a relation symbol then
 \[
 s_{H_{\Sigma,E}} = \{(t_1, \ldots, t_n) \mid s(t_1, \ldots, t_n) \in E\}.
 \]
Herbrand Interpretation

Definition 5.1.6

Let $E \subseteq B_\Sigma$.

The Herbrand interpretation $H_{\Sigma,E}$ consists of the domain D_Σ and:

1. Constants symbols s are mapped to themselves.

2. If s is a function symbol and if $t_1, \ldots, t_n \in D_\Sigma$ then
 $$s_{H_{\Sigma,E}}(t_1, \ldots, t_n) = s(t_1, \ldots, t_n).$$

3. If s is a propositional variable, $s_{H_{\Sigma,E}} = 1$ (true) iff $s \in E$.

4. If s is a relation symbol then
 $$s_{H_{\Sigma,E}} = \{(t_1, \ldots, t_n) \mid s(t_1, \ldots, t_n) \in E\}.$$

Another way to put it:

- Terms are interpreted as themselves.

- E is the set of true atomic formulae.
Example 5.1.8

Let \(\Sigma = \{ a^0, b^0, P^1, Q^1 \} \)

The Herbrand universe is \(D_\Sigma = \{ a, b \} \).

The set \(E = \{ P(b), Q(a) \} \) defines the Herbrand interpretation \(H \) where:

- constants \(a \) and \(b \) are mapped to themselves
- \(P_H = \{ b \} \) and \(Q_H = \{ a \} \).
Example 5.1.8

Let $\Sigma = \{a^f_0, b^f_0, P^r_1, Q^r_1\}$

The Herbrand universe is $D_\Sigma = \{a, b\}$.

The set $E = \{P(b), Q(a)\}$ defines the Herbrand interpretation H where:

- constants a and b are mapped to themselves and
- $P_H = \{b\}$ and $Q_H = \{a\}$.
Universal closure and Herbrand model

Theorem 5.1.16

Let Γ be a set of formulae with no quantifier over the signature Σ.

\[\forall(\Gamma) \text{ has a model} \]

if and only if

\[\forall(\Gamma) \text{ has a model which is a Herbrand interpretation.} \]

- Proof: Cf. handout course notes (just choose the “right” E)
- Consequence: no need to look for another model!
Example

Let $\Sigma = \{ a^f_0, b^f_0, P^r_1, Q^r_1 \}$

Let I be the interpretation of domain $\{0, 1\}$ where:

- $a_I = 0$, $b_I = 1$,
- $P_I = \{1\}$ and $Q_I = \{0\}$.
Example

Let $\Sigma = \{ a^0, b^0, P^1, Q^1 \}$

Let I be the interpretation of domain $\{0, 1\}$ where:

- $a_I = 0, \ b_I = 1,$
- $P_I = \{1\}$ and $Q_I = \{0\}.$

The Herbrand domain is still $D_\Sigma = \{ a, b \}.$

The set $E = \{ P(b), Q(a) \}$ defines the Herbrand interpretation H where:

- Constants a and b are mapped to themselves
- $P_H = \{ b \}$ and $Q_H = \{ a \}.$

I is a model of a set $\forall(\Gamma)$ of formulae iff H is a Herbrand model of $\forall(\Gamma).$
Plan

Introduction

Herbrand Universe (domain) and Herbrand Base

Herbrand Interpretation

Herbrand's Theorem

Skolemization
 Motivation, properties and examples
 Definitions and procedure

Conclusion
Herbrand’s Theorem

Theorem 5.1.17

Let Γ be a set of formulae with no quantifiers over signature Σ.

$$\forall(\Gamma) \text{ has a model}$$

if and only if

Every finite set of closed instances of formulae of Γ has a propositional model $B_\Sigma \rightarrow \{0, 1\}$.

Reminders:

- Σ contains at least one constant a and no $=$ sign
- Instantiate = substitute each variable by a term
Other version of Herbrand’s Theorem

Corollary 5.1.18

Let \(\Gamma \) be a set of formulae without quantifier over signature \(\Sigma \).

\[\forall (\Gamma) \text{ is unsatisfiable} \]

if and only if

There is a finite unsatisfiable set of closed instances of formulae taken from \(\Gamma \)

Proof.

Negate each side of the equivalence of the previous statement of Herbrand’s theorem.
Semi-decision procedure: unsatisfiability of $\forall(\Gamma)$

Let Γ be a finite set of formulae with no quantifier. We enumerate the set of closed instances of the formulae of Γ and:

1. if we find an unsatisfiable set, then $\forall(\Gamma)$ is unsatisfiable.
2. if we have enumerated all of them without contradiction (for a Σ without functions), then $\forall(\Gamma)$ is satisfiable.
3. in the meantime, we cannot conclude: ▶ either $\forall(\Gamma)$ is satisfiable (and we will never stop); ▶ or $\forall(\Gamma)$ is unsatisfiable but we haven't enumerated enough instances to reach a contradiction.
Semi-decision procedure: unsatisfiability of $\forall(\Gamma)$

Let Γ be a finite set of formulae with no quantifier. We enumerate the set of closed instances of the formulae of Γ and:

1. if we find an unsatisfiable set, then $\forall(\Gamma)$ is unsatisfiable.
Semi-decision procedure: unsatisfiability of $\forall(\Gamma)$

Let Γ be a finite set of formulae with no quantifier. We enumerate the set of closed instances of the formulae of Γ and:

1. if we find an unsatisfiable set, then $\forall(\Gamma)$ is unsatisfiable.
2. if we have enumerated all of them without contradiction (for a Σ without functions), then $\forall(\Gamma)$ is satisfiable.
Semi-decision procedure: unsatisfiability of $\forall(\Gamma)$

Let Γ be a finite set of formulae with no quantifier. We enumerate the set of closed instances of the formulae of Γ and:

1. if we find an unsatisfiable set, then $\forall(\Gamma)$ is unsatisfiable.
2. if we have enumerated all of them without contradiction (for a Σ without functions), then $\forall(\Gamma)$ is satisfiable.
3. in the meantime, we cannot conclude:
 - either $\forall(\Gamma)$ is satisfiable (and we will never stop);
 - or $\forall(\Gamma)$ is unsatisfiable but we haven’t enumerated enough instances to reach a contradiction.
Example 5.1.19 (1/5)

Let $\Gamma = \{ P(x), Q(x), \neg P(a) \lor \neg Q(b) \}$ and $\Sigma = \{ a^0, b^0, P^1, Q^1 \}$.
Example 5.1.19 (1/5)

Let \(\Gamma = \{ P(x), Q(x), \neg P(a) \lor \neg Q(b) \} \) and \(\Sigma = \{ a^{f_0}, b^{f_0}, P^{r_1}, Q^{r_1} \} \).

\[D_\Sigma = \{ a, b \}. \]

The set \(\{ P(a), Q(b), \neg P(a) \lor \neg Q(b) \} \) of instances over the \(D_\Sigma \) is unsatisfiable, hence \(\forall (\Gamma) \) is unsatisfiable.
Example 5.1.19 (2/5)

Let $\Gamma = \{P(x) \lor Q(x), \neg P(a), \neg Q(b)\}$
Let $\Gamma = \{ P(x) \lor Q(x), \neg P(a), \neg Q(b) \}$

The set of all the instances over D_Σ is:
\[\{ P(a) \lor Q(a), P(b) \lor Q(b), \neg P(a), \neg Q(b) \} \]
It has a propositional model characterised by $E = \{ P(b), Q(a) \}$.

Hence the Herbrand interpretation associated to E is a model of $\forall(\Gamma)$.
Example 5.1.19 (3/5)

Let \(\Gamma = \{ P(x), \neg P(f(x)) \} \) and \(\Sigma = \{ a^{f_0}, f^{f_1}, P^{r_1} \} \).
Example 5.1.19 (3/5)

Let $\Gamma = \{ P(x), \neg P(f(x)) \}$ and $\Sigma = \{ a^{f_0}, f^{f_1}, P^{r_1} \}$.

$D_\Sigma = \{ f^n(a) | n \in \mathbb{N} \}$.

The set $\{ P(f(a)), \neg P(f(a)) \}$ is unsatisfiable, hence $\forall(\Gamma)$ is unsatisfiable.
Example 5.1.19 (4/5)

Let $\Gamma = \left\{ \begin{array}{l} \neg P(a), \\ P(x) \lor \neg P(f(x)), \\ P(f(f(a))) \end{array} \right\}$
Example 5.1.19 (4/5)

Let $\Gamma = \{ \neg P(a), \ P(x) \lor \neg P(f(x)), \ P(f(f(a))) \}$

\[
\begin{cases}
\neg P(a), \\
P(x) \lor \neg P(f(x)), \\
P(f(f(a)))
\end{cases}
\]

\[
\begin{cases}
\neg P(a), \\
P(a) \lor \neg P(f(a)), \\
P(f(a)) \lor \neg P(f(f(a))), \\
P(f(f(a)))
\end{cases}
\]

is unsatisfiable, hence $\forall(\Gamma)$ too.
Example 5.1.19 (4/5)

Let $\Gamma = \{ \neg P(a), P(x) \lor \neg P(f(x)), P(f(f(a))) \}$

$\left\{ \begin{array}{l}
\neg P(a), \\
P(a) \lor \neg P(f(a)), \\
P(f(a)) \lor \neg P(f(f(a))), \\
P(f(f(a)))
\end{array} \right\}$

is unsatisfiable, hence $\forall(\Gamma)$ too.

Remark: note that we had to consider 2 instances ($x := a$ then $x := f(a)$) of the second formula of Γ to obtain a contradiction.
Example 5.1.19 (5/5)

Let $$\Gamma = \left\{ \begin{array}{c} R(x, s(x)), \\ R(x, y) \land R(y, z) \Rightarrow R(x, z), \\ \neg R(x, x) \end{array} \right\}$$

and $$\Sigma = \{ a^{f_0}, s^{f_1}, R^{r_2} \}.$$
Example 5.1.19 (5/5)

Let \(\Gamma = \{ R(x, s(x)), \ R(x, y) \land R(y, z) \Rightarrow R(x, z), \ \neg R(x, x) \} \)

and \(\Sigma = \{ a^{f_0}, s^{f_1}, R^{r_2} \} \).

\[
D_{\Sigma} = \{ s^n(a) \mid n \in \mathbb{N} \}. \text{ This is an infinite domain.}
\]

Every finite set of instances of formulae of \(\Gamma \) has a model: the enumeration will never stop.
Example 5.1.19 (5/5)

Let $\Gamma = \begin{cases} R(x, s(x)), \\ R(x, y) \land R(y, z) \Rightarrow R(x, z), \\ \neg R(x, x) \end{cases}$ \(n < n + 1 \)

\(x < y < z \Rightarrow x < z \)

\(\neg (x < x) \)

and $\Sigma = \{ a^{f_0}, s^{f_1}, R^{r_2} \}$.

$D_{\Sigma} = \{ s^n(a) \mid n \in \mathbb{N} \}$. This is an infinite domain.

Every finite set of instances of formulae of Γ has a model: the enumeration will never stop.

Indeed, $\forall(\Gamma)$ has an infinite model: the interpretation I of domain \mathbb{N} with $a_I = 0$, $s_I(n) = n + 1$ and $R(x, y) = x < y$.
Example 5.1.19 (5/5)

Let \(\Gamma = \left\{ \begin{array}{l} R(x, s(x)) , \\ R(x, y) \land R(y, z) \Rightarrow R(x, z) , \\ \neg R(x, x) \end{array} \right\} \)

and \(\Sigma = \{ a^{f_0}, s^{f_1}, R^{r_2} \} \).

\(D_\Sigma = \{ s^n(a) \mid n \in \mathbb{N} \} \). This is an infinite domain.

Every finite set of instances of formulae of \(\Gamma \) has a model: the enumeration will never stop.

Indeed, \(\forall(\Gamma) \) has an infinite model: the interpretation \(I \) of domain \(\mathbb{N} \) with \(a_I = 0 \), \(s_I(n) = n + 1 \) and \(R(x, y) = x < y \).

Remark: \(\forall(\Gamma) \) has no finite model, i.e., it is useless to look for one by \(n \)-expansions.
Plan

Introduction

Herbrand Universe (domain) and Herbrand Base

Herbrand Interpretation

Herbrand’s Theorem

Skolemization
 Motivation, properties and examples
 Definitions and procedure

Conclusion
Introduction

Herbrand’s theorem applies to the domain closure of a set of formulae with no quantifier.
Introduction

Herbrand’s theorem applies to the domain closure of a set of formulae with no quantifier.

For formulae with existential quantification, we use skolemization (Thoralf Albert Skolem).
Introduction

Herbrand’s theorem applies to the domain closure of a set of formulae with no quantifier.

For formulae with existential quantification, we use skolemization (Thoralf Albert Skolem).

Skolemization

- transforms a set of closed formulae to the domain closure of a set of formulae with no quantifier.
- preserves the existence of a model (satisfiability).
Example 5.2.1

The formula $\exists x P(x)$ is skolemized as $P(a)$.

We note the following relations between the two formulae:
Example 5.2.1

The formula $\exists x P(x)$ is skolemized as $P(a)$.

We note the following relations between the two formulae:

1. $\exists x P(x)$ is a consequence of $P(a)$
Example 5.2.1

The formula $\exists x P(x)$ is **skolemized** as $P(a)$.

We note the following relations between the two formulae:

1. $\exists x P(x)$ is a consequence of $P(a)$
2. $P(a)$ is **not** a consequence of $\exists x P(x)$, but a model of $\exists x P(x)$
 "provides" a model of $P(a)$.

 (Just choose to interpret a as an element of P_i.)
Definitions

A first-order formula is in **normal form** if it does not contain \Leftrightarrow nor \Rightarrow and if its negations only apply to **atomic formulae**.
Definitions

A first-order formula is in **normal form** if it does not contain \Leftrightarrow nor \Rightarrow and if its negations only apply to **atomic formulae**.

Definition 5.2.3

A closed formula is said to be **proper**, if no variable is bound by two distinct quantifiers.

▶ The formula $\forall x P(x) \lor \forall x Q(x)$ is **not proper**.

▶ The formula $\forall x P(x) \lor \forall y Q(y)$ is **proper**.

▶ The formula $\forall x (P(x) \Rightarrow \exists x Q(x) \land \exists y R(x, y))$ is **not proper**.

▶ The formula $\forall x (P(x) \Rightarrow \exists y R(x, y))$ is **proper**.
Definitions

A first-order formula is in normal form if it does not contain \(\leftrightarrow\) nor \(\Rightarrow\) and if its negations only apply to atomic formulae.

Definition 5.2.3

A closed formula is said to be proper, if no variable is bound by two distinct quantifiers.

Example 5.2.4

- The formula \(\forall x P(x) \lor \forall x Q(x)\) is
Definitions

A first-order formula is in **normal form** if it does not contain \leftrightarrow nor \Rightarrow and if its negations only apply to **atomic formulae**.

Definition 5.2.3

A closed formula is said to be **proper**, if no variable is bound by two distinct quantifiers.

Example 5.2.4

- The formula $\forall x P(x) \lor \forall x Q(x)$ is **not proper**.
- The formula $\forall x P(x) \lor \forall y Q(y)$ is
Definitions

A first-order formula is in **normal form** if it does not contain \iff nor \implies and if its negations only apply to **atomic formulae**.

Definition 5.2.3

A closed formula is said to be **proper**, if no variable is bound by two distinct quantifiers.

Example 5.2.4

- The formula $\forall x P(x) \lor \forall x Q(x)$ is **not proper**.
- The formula $\forall x P(x) \lor \forall y Q(y)$ is **proper**.
- The formula $\forall x (P(x) \implies \exists x Q(x) \land \exists y R(x, y))$ is
Definitions

A first-order formula is in normal form if it does not contain \leftrightarrow nor \Rightarrow and if its negations only apply to atomic formulae.

Definition 5.2.3

A closed formula is said to be proper, if no variable is bound by two distinct quantifiers.

Example 5.2.4

- The formula $\forall x P(x) \lor \forall x Q(x)$ is not proper.
- The formula $\forall x P(x) \lor \forall y Q(y)$ is proper.
- The formula $\forall x (P(x) \Rightarrow \exists x Q(x) \land \exists y R(x, y))$ is not proper.
- The formula $\forall x (P(x) \Rightarrow \exists y R(x, y))$ is
Definitions

A first-order formula is in **normal form** if it does not contain \iff nor \Rightarrow and if its negations only apply to **atomic formulae**.

Definition 5.2.3

A closed formula is said to be **proper**, if no variable is bound by two distinct quantifiers.

Example 5.2.4

- The formula $\forall x P(x) \lor \forall x Q(x)$ is **not proper**.
- The formula $\forall x P(x) \lor \forall y Q(y)$ is **proper**.
- The formula $\forall x (P(x) \Rightarrow \exists x Q(x) \land \exists y R(x, y))$ is **not proper**.
- The formula $\forall x (P(x) \Rightarrow \exists y R(x, y))$ is **proper**.
How to skolemize a closed formula A?

Definition 5.2.5 (skolemization)

Let A be a closed formula:

1. $B = \text{Normalize } A$
2. $C = \text{Make } B \text{ proper}$
3. $D = \text{Eliminate existential quantifiers from } C$

 (This transformation only preserves the existence of a model.)
4. $E = \text{Remove the universal quantifiers from } D$

 E is the Skolem form of A. (E is a normal formula with no quantifier.)
How to skolemize a closed formula A?

Definition 5.2.5 (skolemization)

Let A be a closed formula:

1. $B = \text{Normalize } A$
How to skolemize a closed formula A?

Definition 5.2.5 (skolemization)

Let A be a closed formula:

1. $B = \text{Normalize } A$
2. $C = \text{Make } B \text{ proper}$
How to skolemize a closed formula A?

Definition 5.2.5 (skolemization)

Let A be a closed formula:

1. $B = \text{Normalize } A$
2. $C = \text{Make } B \text{ proper}$
3. $D = \text{Eliminate existential quantifiers from } C$.

 This transformation only preserves the existence of a model.
How to skolemize a closed formula A?

Definition 5.2.5 (skolemization)

Let A be a closed formula:

1. $B = \text{Normalize } A$
2. $C = \text{Make } B \text{ proper}$
3. $D = \text{Eliminate existential quantifiers from } C$.
 This transformation only preserves the existence of a model.
4. $E = \text{Remove the universal quantifiers from } D$.

E is the **Skolem form** of A.
(E is a normal formula with no quantifier.)
1. Normalization

1. Eliminate the equivalences
2. Eliminate the implications
3. Move the negations towards the atomic formulae

Rules

1. et 2. As in propositional logic:
\[A \iff B \equiv (A \implies B) \land (B \implies A) \]
\[A \implies B \equiv \neg A \lor B \]

3. As in propositional logic:
\[\neg \neg A \equiv A \]
\[\neg (A \land B) \equiv \neg A \lor \neg B \]
\[\neg (A \lor B) \equiv \neg A \land \neg B \]

Furthermore
\[\neg \forall x A \equiv \exists x \neg A \]
\[\neg \exists x A \equiv \forall x \neg A \]
Example 5.2.7

The normal form of \(\forall y (\forall x P(x, y) \Leftrightarrow Q(y)) \) is:

\[
\forall y (\exists x \neg P(x, y) \lor Q(y)) \land (\neg Q(y) \lor \forall x P(x, y))
\]
Example 5.2.7

The normal form of $\forall y (\forall x P(x, y) \Leftrightarrow Q(y))$ is:

First, elimination of \Leftrightarrow:

$$\forall y ((\neg \forall x P(x, y) \lor Q(y)) \land (\neg Q(y) \lor \forall x P(x, y)))$$
The normal form of $\forall y (\forall x P(x, y) \equiv Q(y))$ is:

First, elimination of \equiv:

$$\forall y ((\neg \forall x P(x, y) \lor Q(y)) \land (\neg Q(y) \lor \forall x P(x, y)))$$

then, move \neg:

$$\forall y ((\exists x \neg P(x, y) \lor Q(y)) \land (\neg Q(y) \lor \forall x P(x, y)))$$
2. Transformation to a proper formula

Rename bound variables, e.g., by choosing new names.

Example 5.2.8

- The formula $\forall x P(x) \lor \forall x Q(x)$ is changed to
2. Transformation to a proper formula

Rename bound variables, e.g., by choosing new names.

Example 5.2.8

- The formula $\forall xP(x) \lor \forall xQ(x)$ is changed to
 $$\forall xP(x) \lor \forall yQ(y)$$

- The formula $\forall x(P(x) \Rightarrow \exists xQ(x) \land \exists yR(x, y))$ is changed to
2. Transformation to a proper formula

Rename bound variables, e.g., by choosing new names.

Example 5.2.8

- The formula $\forall x P(x) \lor \forall x Q(x)$ is changed to
 $$\forall x P(x) \lor \forall y Q(y)$$

- The formula $\forall x (P(x) \Rightarrow \exists x Q(x) \land \exists y R(x,y))$ is changed to
 $$\forall x (P(x) \Rightarrow \exists z Q(z) \land \exists y R(x,y))$$
3. Elimination of existential quantifiers

Let $\exists y B$ be a sub-formula of a closed normal and proper formula A. Let $x_1, \ldots x_n$ be the free variables of $\exists y B$.

Let f be a new symbol (if $n = 0$, then f is a constant) and replace $\exists y B$ by $B < y := f(x_1, \ldots x_n) >$ in A.
3. Elimination of existential quantifiers

Let $\exists y B$ be a sub-formula of a closed normal and proper formula A. Let $x_1, \ldots x_n$ be the free variables of $\exists y B$.

Let f be a new symbol (if $n = 0$, then f is a constant) and replace $\exists y B$ by $B < y := f(x_1, \ldots x_n) >$ in A.

Theorem 5.2.9

The resulting formula A' is a closed, normal and proper formula such that:

1. A is a consequence of A'
2. If A has a model then A' has an identical model (up to the truth value of f).
Remark 5.2.10

The resulting formula A' remains closed, normal and proper.

Hence, by repeatedly “applying” the theorem, choosing a new symbol for each eliminated quantifier, one can get:

- a closed, normal, proper formula B without \exists
- such that A has a model if and only if B has one.
Example 5.2.11

By eliminating existential quantifiers in the formula
$\exists x \forall y P(x, y) \land \exists z \forall u \neg P(z, u)$ we obtain

$\forall y P(a, y) \land \forall u \neg P(a, u)$.
Example 5.2.11

By eliminating existential quantifiers in the formula
\[\exists x \forall y P(x, y) \land \exists z \forall u \neg P(z, u) \] we obtain
\[\forall y P(a, y) \land \forall u \neg P(b, u). \]

It is easy to observe that this formula has a model.
Example 5.2.11

By eliminating existential quantifiers in the formula
\[\exists x \forall y P(x, y) \land \exists z \forall u \neg P(z, u) \]
we obtain
\[\forall y P(a, y) \land \forall u \neg P(b, u). \]
It is easy to observe that this formula has a model.

But if we **mistakently** eliminate both \(\exists \) using the same constant \(a \), we obtain
\[\forall y P(a, y) \land \forall u \neg P(a, u) \]
which is unsatisfiable (it entails \(P(a, a) \) and \(\neg P(a, a) \)).
Exemple 5.2.12

By eliminating the existential quantifiers in the formula
\[\exists x \forall y \exists z P(x, y, z) \] we obtain

\[\exists x \forall y \exists z P(x, y, z) \]

\[\rightarrow \forall y P(a, y, f(y)) \]

\[\rightarrow \forall y P(b, y, g(b, y)) \]

The existence of a model is preserved in both cases.
Exemple 5.2.12

By eliminating the existential quantifiers in the formula $\exists x \forall y \exists z P(x, y, z)$ we obtain two possible solutions:

- If we eliminate first $\exists x :$
 $\forall y \exists z P(a, y, z)$
Exemple 5.2.12

By eliminating the existential quantifiers in the formula
\(\exists x \forall y \exists z P(x, y, z) \) we obtain

two possible solutions:

- is we eliminate first \(\exists x \):
 \[\forall y \exists z P(a, y, z) \quad \rightarrow \quad \forall y P(a, y, f(y)) \]
Exemple 5.2.12

By eliminating the existential quantifiers in the formula
\[\exists x \forall y \exists z P(x, y, z) \] we obtain

- if we eliminate first \(\exists x \):
 \[\forall y \exists z P(a, y, z) \implies \forall y P(a, y, f(y)) \]

- if we eliminate first \(\exists z \):
 \[\exists x \forall y P(x, y, g(x, y)) \]
By eliminating the existential quantifiers in the formula $\exists x \forall y \exists z P(x, y, z)$ we obtain two possible solutions:

1. If we eliminate first $\exists x$:
 $$\forall y \exists z P(a, y, z) \rightarrow \forall y P(a, y, f(y))$$

2. If we eliminate first $\exists z$:
 $$\exists x \forall y P(x, y, g(x, y)) \rightarrow \forall y P(b, y, g(b, y))$$

The existence of a model is preserved in both cases.
Exemple 5.2.12

By eliminating the existential quantifiers in the formula
\[\exists x \forall y \exists z P(x, y, z) \]
we obtain two possible solutions:

- If we eliminate first \(\exists x \):
 \[\forall y \exists z P(a, y, z) \quad \rightarrow \quad \forall y P(a, y, f(y)) \]

- If we eliminate first \(\exists z \):
 \[\exists x \forall y P(x, y, g(x, y)) \quad \rightarrow \quad \forall y P(b, y, g(b, y)) \]

The existence of a model is preserved in both cases.
4. Transformation into a universal closure

Theorem 5.2.13

Let A be a closed, normal, proper formula without existential quantifier. Let B be the formula obtained by removing all the \forall from A. A is equivalent to $\forall(B)$.

Proof. What we are doing is actually applying repeatedly replacements such as:

$\forall x C \land D \equiv \forall x (C \land D)$

$\forall x C \lor D \equiv \forall x (C \lor D)$

where x is not free in D. B. Wack et al (UGA)
4. Transformation into a universal closure

Theorem 5.2.13

Let A be a closed, normal, proper formula without existential quantifier. Let B be the formula obtained by removing all the \forall from A.

A is equivalent to $\forall(B)$.

Proof.

What we are doing is actually applying repeatedly replacements such as:

- $(\forall x C) \land D \equiv \forall x (C \land D)$
- $(\forall x C) \lor D \equiv \forall x (C \lor D)$

where x is not free in D.
Property of skolemization

Property 5.2.14

Let A be a closed formula and E the Skolem form of A. A has a model if and only if $\forall (E)$ has a model.

Proof.

A a closed formula

\[
\begin{array}{c}
A \\
\downarrow \\
\begin{array}{c}
B \\
\downarrow \\
C \\
\downarrow \\
D \\
\downarrow \\
E \text{ Skolem form}
\end{array}
\end{array}
\]

Normalize (equivalent)

Make proper (equivalent)

Eliminate \exists ("preserves" the models)

Remove \forall (equivalent to $\forall (E)$)
Example 5.2.15

Let $A = \forall x (P(x) \Rightarrow Q(x)) \Rightarrow (\forall x P(x) \Rightarrow \forall x Q(x))$. We skolemize $\neg A$.

1. $\neg A$ is transformed into the normal formula:
 $$\forall x (\neg P(x) \lor Q(x)) \land \forall x P(x) \land \exists x \neg Q(x)$$

2. The normal formula is made proper:
 $$\forall x (\neg P(x) \lor Q(x)) \land \forall y P(y) \land \neg Q(a)$$

3. The existential quantifier is "replaced" by a constant:
 $$\forall x (\neg P(x) \lor Q(x)) \land \forall y P(y) \land \neg Q(a)$$

4. The universal quantifiers are removed:
 $$\neg P(a) \lor Q(a) \land P(a) \land \neg Q(a)$$

The instantiation $x := a, y := a$ yields
$$\neg P(a) \lor Q(a) \land P(a) \land \neg Q(a)$$

Hence (Herbrand's theorem) the Skolem form of $\neg A$ is unsatisfiable.

Since skolemization preserves satisfiability, $\neg A$ is unsatisfiable.
Example 5.2.15

Let \(A = \forall x (P(x) \Rightarrow Q(x)) \Rightarrow (\forall x P(x) \Rightarrow \forall x Q(x)) \). We skolemize \(\neg A \).

1. \(\neg A \) is transformed into the normal formula:
 \(\forall x (\neg P(x) \lor Q(x)) \land \forall x P(x) \land \exists x \neg Q(x) \)
Example 5.2.15

Let $A = \forall x (P(x) \Rightarrow Q(x)) \Rightarrow (\forall x P(x) \Rightarrow \forall x Q(x))$. We skolemize $\neg A$.

1. $\neg A$ is transformed into the normal formula:
 $$\forall x (\neg P(x) \lor Q(x)) \land \forall x P(x) \land \exists x \neg Q(x)$$

2. The normal formula is made proper:
 $$\forall x (\neg P(x) \lor Q(x)) \land \forall y P(y) \land \exists z \neg Q(z)$$
Example 5.2.15

Let $A = \forall x (P(x) \Rightarrow Q(x)) \Rightarrow (\forall x P(x) \Rightarrow \forall x Q(x))$. We skolemize $\neg A$.

1. $\neg A$ is transformed into the normal formula:
 $$\forall x (\neg P(x) \lor Q(x)) \land \forall x P(x) \land \exists x \neg Q(x)$$

2. The normal formula is made proper:
 $$\forall x (\neg P(x) \lor Q(x)) \land \forall y P(y) \land \exists z \neg Q(z)$$

3. The existential quantifier is “replaced” by a constant:
 $$\forall x (\neg P(x) \lor Q(x)) \land \forall y P(y) \land \neg Q(a)$$
Example 5.2.15

Let $A = \forall x(P(x) \Rightarrow Q(x)) \Rightarrow (\forall xP(x) \Rightarrow \forall xQ(x))$. We skolemize $\neg A$.

1. $\neg A$ is transformed into the normal formula:
 \[\forall x(\neg P(x) \lor Q(x)) \land \forall xP(x) \land \exists x \neg Q(x) \]

2. The normal formula is made proper:
 \[\forall x(\neg P(x) \lor Q(x)) \land \forall yP(y) \land \exists z \neg Q(z) \]

3. The existential quantifier is “replaced” by a constant:
 \[\forall x(\neg P(x) \lor Q(x)) \land \forall yP(y) \land \neg Q(a) \]

4. The universal quantifiers are removed:
 \[(\neg P(x) \lor Q(x)) \land P(y) \land \neg Q(a). \]
Example 5.2.15

Let $A = \forall x(P(x) \Rightarrow Q(x)) \Rightarrow (\forall xP(x) \Rightarrow \forall xQ(x))$. We skolemize $\neg A$.

1. $\neg A$ is transformed into the normal formula:
 $$\forall x(\neg P(x) \lor Q(x)) \land \forall xP(x) \land \exists x \neg Q(x)$$

2. The normal formula is made proper:
 $$\forall x(\neg P(x) \lor Q(x)) \land \forall yP(y) \land \exists z \neg Q(z)$$

3. The existential quantifier is “replaced” by a constant:
 $$\forall x(\neg P(x) \lor Q(x)) \land \forall yP(y) \land \neg Q(a)$$

4. The universal quantifiers are removed:
 $$(\neg P(x) \lor Q(x)) \land P(y) \land \neg Q(a).$$

The instantiation $x := a, y := a$ yields $(\neg P(a) \lor Q(a)) \land P(a) \land \neg Q(a)$.

Hence (Herbrand’s theorem) the Skolem form of $\neg A$ is unsatisfiable.

Since skolemization preserves satisfiability, $\neg A$ is unsatisfiable.
Plan

Introduction

Herbrand Universe (domain) and Herbrand Base

Herbrand Interpretation

Herbrand’s Theorem

Skolemization
 Motivation, properties and examples
 Definitions and procedure

Conclusion
Today

- To prove that A is **satisfiable**:
 - Look for a (finite) model by n-expansions

- To prove that A est **unsatisfiable**:
 - **Skolemisation**
 - Look for a **(finite) unsatisfiable set of instances** over D_{Σ}
 - Herbrand’s theorem: then A is unsatisfiable too

- These methods are **non terminating** and limited to finite interpretations

- To find a counter-model or to prove the validity of A, we proceed as before with $\neg A$
Next course

First-order **deductive** method:

- Clausal form
- Unification
- First-order resolution
- Consistency
- Completeness